J‘. DIFFERENTIAL GEOMETRY
27 (1988) 137—154

A CONSTRUCTION OF STABLE BUNDLES
ON AN ALGEBRAIC SURFACE

DAVID GIESEKER

1. Let X be a smooth projective algebraic surface over C and let H be an
ample divisor on X. We recall that a bundle & of rank two and ¢;(&) = 0 is
H-stable (in the sense of Mumford-Takemoto) if whenever .# is a line bundle
on X which admits a nonzero map to &, then we have (¢;(¥)-H)<0. In
this paper, we will consider the problem of constructing stable bundles & on X
of rank two with ¢;(&) = 0 and ¢,(&) a prescribed number. From work of
Donaldson [1], this question is a special case of the following: When does a
principal SU(2) bundle on a four dimensional Riemannian manifold admit an
irreducible self dual connection? In this guise, the problem has been studied by
Taubes [4]. There has also been some work on higher dimensional manifolds
by Uhlenbeck and Yau. The basic goal is to give conditions on the topology of
X so that stable bundles & of the type considered exist with ¢,(&) a given
integer. The topological invariant of interest here is 4°( X, @(K)), the number
of holomorphic two forms on X. Throughout the paper, we will use 4° as an
abbreviation for /°( X, 0(K)). [r] is the greatest integer in .

Theorem 1.1. Ifn > 4[h°/2] + 1), then there is an H-stable bundle & on X
of rank two with ¢,(&) = 0 and c,(&) = n.

Theorem 1.2. If h° > 1000 and n > (3/2)h° + 6, then there is an H-stable
bundle & on X of rank two with ¢,(&) = 0 and ¢,(&) = n.

We note that Taubes constructs bundles of the above type for n > (8,/3)A°
+ 2. Our methods are modeled on Taubes’ methods, namely both methods are
degeneration theoretic. My main motivation for this paper was to see Taubes’
argument is an algebro-geometric setting. Actually, the argument we will use is
somewhat different than Taubes’.

One’s first idea in attacking this problem is to construct a torsion free
coherent H-stable sheaf # on X and to prove that % can be deformed to a
locally free sheaf. However, we have adopted a different but related approach
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which we now describe. Let C be a smooth curve which will function as a
parameter space for our deformation and let P € C. Let Z, = X X C. Pick
X500+, x, € X and blow up x; X P in Z; to obtain a threefold Z. D will
denote the proper. transform of X X P and D,,---, D, will be the new
exceptional divisors introduced by blowing up. Each D, is isomorphic to P2
Let D = D + ¥D, and choose v, = (a,, 8,) € C* — {(0,0)}. We assume that
v, span C?2, For each i, we define a map

¢, 02— Op,

by
‘i’[(a’ b) = aa, + bB,.

Let. ¢: 02 — ®,0p, be & ¢, Let & = Ker¢. Thus (g, b) is a section of &’
over an open V if ae; + bB, vanishes on each D; N V. Note that on some
neighborhood U, of D;,, &’ is a direct sum (0 ® O(- -D))y. In particular,
&p, = 0p & 0p (1), since the ideal sheaf J, of D, is isomorphic to 0, (1)
when restrlcted to D,.

Here is our basic strategy: Let &, = &;,. (Here 2D is the scheme defined by
F2 and é’z’ p=¢ @y (0/7; 2) Thus &, is a sheaf of locally free modules
over 0,/%3.) We will analyze the obstructions to extending &, to a sheaf of
locally free modules over 3D, then to 2D + D and then to 2D + 2D,2D + 3D,
etc.

We first study how to extend &, to a sheaf of modules &, locally free on
3D. D, is just P? and D N D; is a line L, in P2, 3D N D, is just the scheme
3L, P _

Defmltlon 1.3. A sheaf # of locally free @,, modules is nondegenerate if

% satisfies the following conditions

AN F= 0,,(1).

b) There is not a quotient % — Q — 0 so that Q is an invertible sheaf of
05, modulesand @, = 0,. :

The existence of nondegenerate &, is studied by deformation theory in §2.
Assume that &; satisfies our nondegeneracy condition on 3L;. We show that
(&3)as, can be extended to a stable vector bundle % on P> = D, with

o (ZF ) =1 and c,(#)) = 2. The construction of the &, ’s given in §6 is the
followmg Take lines L given by x = 0 and L’ given by y = 0, where x-and y
are affine coordinates on A? € P?. Construct a surjective map ®: 03. — 0,.(2)
by

®(a,b)=a+ by?,
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and let # ¥ be the kernel of ®. Then ¢;(%#) =1 and c¢,(&) = 2. Using the
nondegeneracy condition on &; we show thatif L=DnN D, C P2, then we
can choose the line L’ so that the above construction gives a suitable extension.

By gluing ¢’ and %, together, we can construct a bundie ¢ on 2D + D.
Let 9, = ¥;. Next we study the problem of extending %, to a bundle on
2D + 2D, and then to 2D + 3D, etc. in §2. In each case, the obstruction to
making such an extension is in

(1.3.1) H?*(D,End®(9,) ® %,,).

Here End%(¢&) is the sheaf of endomorphisms of & with trace zero. We
suppose we have chosen the x,;’s and v,’s so that (1.3.1) is zero. We can use
Grothendieck’s Quot scheme [3] in §5 to show that 4, can be extended to a
bundle & on Z. (A minor technical point: We may have to base extend C.) We
then can show using a standard semicontinuity argument that for generic
s € C, the bundle &, is H-stable, c,(&,) = 2n and ¢,(&,) = 0.

We are thus left with the problem of finding conditions on the x; and v, and
n so that nondegenerate extensions &; exist and so that %, can be lifted back
to larger and larger infinitesimal neighborhoods of D. Let us consider the
problem of showing that (1.3.1) is zero. Let £= %, ® @,,. We wish to first
establish conditons under which

(1.3.2) H*(D,End°(&) ® 0(-2D)) = 0.

Let E C D be the divisor LE,, where E;= D N D,. The E, are exceptional
curves of the first kind on D. By Serre duality we need to show that

V =H°(D,End*(&)(Ky— E))

is zero. Now & is a subsheaf of @3, and it is isomorphic to @3 away from the
E;’s. 1t follows easily from Hartog’s theorem that any s € V' can be represented

by a matr iX

where a, b, ¢, d are holomorphic two forms on X. Further, the condition s € V
implies linear relations between the values of these two forms and their
. derivatives at x;. For instance, if v; = (1,0), then ¢ must vanish at x, and b
must vanish twice at x,, i.e., b € HY(X,0(K) ® mil). At each x;, the condi-
tion s € V should impose four conditions, one for the vanishing of 4 and
three for the vanishing of b and its two partials. (Locally, we can think of b as
a function.) However, these 4k conditions may not be independent conditions.
To see the problem, let W be a subspace of H%( X, 0(K)) and let W, be the
subspace consisting of points & € W so that b and its two partial derivatives
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vanish at x. Assuming dimW > 4, we can easily see d, = codim, W, > 2.
However if (z,w) are local coordinates at x, all the sections in W could be
locally functions of z, in which case, d, = 2 for x generic. The weak estimate
d, > 2 is all that is needed to establish Theorem 1.1. This situation can
actually occur for elliptic surfaces. Specifically, if C is a curve of genus g and
E is an elliptic curve, then d, = 2for X = C X Eand W = HYK,).

To establish Theorem 1.2, we note that if d, =2 for x generic, then the
linear system defined by W must map X to a curve C € P(W). (Of course,
there may be base points.) If the dimension of W is large, we can find a
hyperplane H, on P(W) which has high order contact with C at some generic
point. The inverse image of H; in X is contained in an effective canonical
divisor E which has a component of high multiplicity. §4 gives a construction
of stable bundles whenever there are many canonical curves C on the surface
which contain components of high order. This construction enables us to
establish the existence of stable bundles with small ¢, if 4, = 2 for x generic if
we begin with a large h°(K,). Our construction also shows that for each
€ > 0, then if d > 0, there are stable bundles & on hypersurfaces X of degree
d in P® with ¢;(&) =0 and ¢,(&) < eh°(Ky). This stands in contrast to a
result in [1] that for a generic Riemannian metric on X, the existence of a
self dual connection on a principal SU(2) bundle P — M requires ¢,(P) >
3/8(b — + 1 — dim H}y). Evidently, the Kahler class on a hypersurface is
not generic in the above sense. (If Q is the intersection matrix on H,,
b_=1/2 (rank signature Q).) §7 contains the proof of Theorems 1.1 and 1.2.

2. Let Z be a smooth threefold, D a divisor with components Dy, - -, D,
which are smooth. We assume D, intersect transversally and that there are no
triple intersections. Let & be a locally free sheaf of rank two on ¥»n,D,, i.e., &
is a sheaf of locally free ¢,/(Xn,D;) modules. We assume there is a line bundle
& on Z so that the restriction of % to Xn,D, is A>&. Choose a k and let

n;+1 fori<k,

mi_{ni fori > k.
We suppose n; > 0 if i < k. We wish to study conditions under which & can
be extended to a sheaf of locally free modules over ¥m,D,. Let D’ = ¥*_; D..

Proposition: 2.1.  Suppose
H?*(D’,End’(&) ® 0, (-Zn,D,)) =0,

where End®(&) is the sheaf of endomorphisms of trace zero. Then & can be
extended to a bundle &' on (Xn,D, + D’} so that £ restricts to det &’.

Proof. The proof uses standard ideas on deformation theory which we
review. Find affine opens U, € Z which cover D so that on each U,, we can
find a free bundle of rank two &, on (Xn,D; + D’) N U, which restricts to &
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on (Xn,D,) N U,. Let ¢,5 be isomorphisms of & with &, over U, N U which
extend the identity map on & when restricted to U, N Up N (Xn,D;). Let

Vagy = 1d = &y 0 P50 Ppq-

Now ¢4, is an endomorphism of &, over U, N Uy N U, = U,4,. Actually
Vopy 18 @ map of &, to &, O(-Xn,D,) =&y ® Oz(-Xn;D;) on U,g,. So we
can regard vz, as a section of End(&')(-Xn,D,) ® Op,. We claim {4} = ¢
is a cocycle and so defines an element

¢ € H*(D",End(&)(-Zn,D))).

It suffices to check dy = 0 locally. Let U be an open so that &,,6, and &,
are all restrictions of a bundle % on ¥m,D, N U. Then we can write ¢, = Id

(23

+ JSQB, where JSGB are sections of %, ® 0(&(-n;D,)) over U. One checks that
d¢ = ¢, and hence dy = 0.
We next claim that ¢ = 0. Indeed, let us look first at

Try € H¥( D', 0,(-Zn,D,)).
Try is just the obstruction to extending det & to a line bundle on ¥m,D,. But
we are given that such an extension is possible, so the obstruction is zero. More
precisely, we can assume that we have £: det&, » % on U, so that £ is the
identity on Xn,D;:

§podetegofy! =1d + Np.
Thus

detd,p = kop+ A,

where k,, = £.' ¢ £, is a coboundary and A 4 is zero on In,D,.

Tr Y agy = 2 = Tr(00yby550) -
But a local computation shows that

Tr( 6, 9y50p.) = 1 + det ¢, det ¢ pdet bg, = 2 + (A, + A s + Mg, ).
So
Try = dA.

So since the kernel of

Tr: H*(D’, (End 6, )(-Xn,D;)) > H*(D’", 0,,(-Zn,D,))
is H*(D’,End®(&,)(-Xn,D,)) = 0, we see that
4’&[37 = d(faﬁ)
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where

gaﬁ:é)ﬁ_)évaa.w(z_nD)'

i
Let
‘i’;,g = ‘i’aB + f,,,g~

The ¢4 satisfies the cocycle condition and provides a lifting of & to Xm D,.

Now # = det &® £~ is a line bundle which is trivial on Xr,D,. Thus we
can choose a local trivialization and present ./ as an element of {7,5} of
H'(0*), where 7,, reduces to 1 on Xn,D,. Let /£’ be given by

Mg = 31+ m,p)-

Then (#’)®? is isomorphic to .#, and so det(£® A') = L.

We next consider the following situation: r, = 2 and all the other n,’s are
zero and m, = 3 with all the other m,’s zero. Thus we have a bundle &, on
2D, and we wish to study the extensions of &, to 3D,. We assume that such
extension &; exists. Let &; be any other extension of &, to 3D,. Then on a
suitable open cover {U,} of 3D, we choose isomorphism ¢,: &; — & defined
over U, extending the identity on U, N 2D,. The one cocycle = {5}

Yop = 1d — ¢5'0, € H'( Dy, End(&)(-2D,))

classifies such extensions, where &= &, ® 0, .

Suppose we have a quotient Q3 of &; over 3D, N D; for some j > 0. (If D,
is locally defined by x = 0 and D; is defined by y = 0, 3D, N D; is defined by
the equations x> = y = 0 as a scheme. Thus Q4 is an invertible module over
0,/(x% y).) Let Q, be the induced quotient of &,. OQur question is: Given &,
(or equivalently ), when does Q, lift to an invertible quotient of Q; of &,
over 3D, N D7 Let Q be the induced quotient of F=¢&, ® Oy p and let L
be the kernel:

(2.2) 0-L->%->Q—0.
There is a natural map from
®: End €(-2D,) —» Hom( L, Q)(-2D,)

since an endomorphism of & gives an endomorphism of % and hence a map
from L to Q.

Lemma (2.3). If Q, lifts to an invertible quotient Q5 of &5 over 3D, N D,
then ®(y,5) = 0 in H'(D, N D;, Hom(L, Q)(-2Dy)).

Proof. 1f Q, lifts to Q,, we can take the ¢, to map Q5 to Q3. Then
‘I)(E[/aﬁ) =0.
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Lemma (2.4). If Q, always lifts for any choice of &5 and the exact sequence
(2.2) splits, then the kernel of the natural map
H*( Dy, End(&)(-2D, — D;)) = H*(D,, End(&)(-2D;))
has dimension > h'(LY® Q(-2Dy)).
Proof. This follows from the long exact sequence associated to
0 — End(&)(-2D, - D) » End(&)(-2D,)
— (End €)(-2D,) ® Opynp, = 0.

Corollary 2.5. Suppose that for each j, (65)p,~p, = Q; ® L; and that Q;
lifts to an invertible quotient of (&3);p, D, Suppose further that
h*( Dy, End°(&)(-2D,)) = 0
and
h*( Dy, End®(&)(-2D, — D)) < k(D, N D,,Q, ® LY(-2Dy)).
Then we can find an extension &, of &, to 3D, so that the quotient Q ; does not
lift to an invertible quotient of (&3);3p, D, for any j and det &) = det &,.

Proof. We have to show there is &« € H(D,, End(&)(-2D,)) which has
nonzero image in H*(D, N D, (L ® Q;)(-2Dy)) where (&)DOHDJ =Q;®
L, Lemma 2.4 shows that such an «; exists for each j. Some linear combina-
tion of the «  works as a,: since the field is infinite.

Remark. We will be interested in applying the results of this section in the
case Z is the variety constructed in §1. D, is the divisor D; of the introduction
for i > 1 and Dy is D, the blow up of X. The &7 will be &5, of §1 and Q, is
Og.Thus Q; ® L} (-2D,) has degree -3 on E;. So

n(Q,® LY(-2D,)) = 2.

3. Let X be the algebraic surface of §1 and let Py,---, P, be points of X in
general position. Let D be blow up of X at P,--+, P,. E,,- - -, E, will denote
the exceptional divisors. Let E = L E,. At each point P;, choose

v, = (;) e Cc?—{(0,0)}.

We produce a new vector bundle & on D by the following construction: For
each E;, consider the map

¢i(f?g) = aif+Big
from 0} to O E,» Where f is the restriction of a local section f of @), to @ E- Let
b= eﬁbp SO
$: 05> @ Op,.
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Thus & is the subsheaf of @3 whose local sections consist of pairs of functions
(f, g) with a,;f + B,g vanishing on E,. We seek conditions on the P, and v, so
that '

(3.1.1) h*(D,End°(&)(2E)) =0
and
(3.1.2) h*(D,End®(&)(2E - E)) < 1

for all i. Let K, be the canonical divisor on D. We have
K,=Ky+E

where K, denotes the pull back of the canonical bundle of X. It suffices to
show that

V=H%D,End°(&)(Ky— E)) =0
and that for
W, = H°(D,End®(&)(Ky— E + E;))

]

we have dimW, < 1.
First, notice that

H°(D — E,End®(8)(Ky)) = H( X —(Ux,), 0(K)*) = H°( X, 0(K)).

Thus any sections of ¥ or W, can be represented as a matrix

a b
4= (c d )
where a, b, ¢, d arein HY(D, 0(K ,))and Tr4 = 0.

We analyze the conditions on a, b, ¢, d for s to be in V. Suppose B, = 1. We
claim that s, = a — a;b and 5, = ¢ — a,d vanish at least once on E,, and that
s; = ba? + (d — a)a; — ¢ vanishes twice on E,. Note that (1, —¢;) is a section
of & near E,, since ¢,(1, —a;) = (0,0). Thus

& 5]

must be a section of &(~E, + K ). In particular, it is a section of O3(-E, + K )
in a neighborhood of E,. Thus s; and s, have the required properties. Further,
(a — a;b,c — a;d) must be in the kernel of the natural map of 03(Ky — E,)
to O, (Ky — E,), ie., 5, must vanish on E, as a section of O,(Ky — E)), i.e., it
vanishes twice on E; as a section of 0,(K). If 8, =0, the corresponding
conditions are that 4 vanishes at least once on E; and b vanishes at least twice
on E,.
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Proposition 3.2. Ler n = [h°/2]+ 1 and k = 2n. Let v, = (1,0) for i =
1,---,nand v,= (0,1) fori=n+1,--- k. If the P, are chosen generically,
then (3.1.1) and (3.1.2) are satisfied.

Proof. Let V.= H%D,0(K(-2E, --- -2E,))). We claim that as long as
dimV; > 2, the codimension of V,_; in ¥V, must be at least two. Indeed, let s,
and s, be two independent sections of V. Then f = s,/s, is a nonconstant
meromorphic function, so we can choose P, ; so that s,(P;,,;)# 0 and
(df)p, # 0. Then

, 51( 121

s’=585 —
! 52( +1) %2

vanishes exactly once on E,_,, so no nontrivial linear combinations of s, and
s” arein V,, ;. Thus our claim is established. In particular, V, = 0.

Let
g (a b)
¢ d
and suppose s € H%(D,End*(&)(K — E)). Since V, = 0, we have b = ¢ = 0.
Since k& > h°, and the P, are generic, a — d is zero since a — d vanishes at the

P,. We have a + d = 0, since the matrix is traceless. So s = 0.
Suppose s, t € H(D,End*(&)(K — E + E,)) are linearly independent. Let

. (a1 b, )
o 4
Since ¢,¢; € V,_, are linearly dependent, we can assume that ¢; =0 by
replacing ¢ by a linear combination of s and r. As before b, = 0 and then
a, = d; = 0. So (3.1.2) is satisfied.
Proposition 3.3.  Suppose V € H( X, K ;) has dimension > 21. Then either

i) for generic x € X, the natural map from V to H( X, O(K)/m? - O(K))
is onto, or

i) for a generic point x € X there is a curve D so that 20D + E = K where
E is effective.

Proof. Let #C 0O(K y) be the subsheaf generated by the sections in V' and
let z,,---, z, be the points at which % is not invertible and let X' = X —
{xy,--+,x,}. The linear system V' then defines a map ® of X’ to P(V). If
®( X’) is a surface, then (i) holds. Otherwise, ®( X’) is a curve < P(V) not
contained in a hyperplane, If x € ®(X’) is a generic point, we can find a
hyperplane H which has contact 20 or more with ®( X’) at x. Let D = ®~'(H).
Then (ii) is valid.
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For the rest of the section, we will assume that there are no canonical
divisors on X with components of multiplicity 20 passing through a generic x,
so case 1) of Proposition 3.3 always holds. In particular, by choosing the x,’s
generically we can assume that

!
(3.3.1) hO(D,@(KX -y 2E,.) =h° - 31

as long as h° — 3/ > 18. We define integers k,, k,, k5 by
— 2,0 2] 2 0]
k= [16h ]+1,k2— [Sh ] [16h ,
5
ky=2h°— 3([§h°]).

Let v, = (}) fori=1to ky,v,=(?) for i =k, + 1 to k, + k; and v, = (§)
fori=k,+ k +1t0k; + k,+ ki

Proposition 34. If the x, and «; are generic and h° > 1000, then
h%(D,End*(EXK — E + E;)) = 0 for anyj.

Proof. We will treat the case j = 1 first. Let

a b
(c d )
be an element of H( D, End*(&)(—E + K + E;). Then b vanishes twice on E,
for 1 < i < k; and ¢ vanishes twice on E; for k; < i < k; + k,. On the other
hand, we have a2?b + ¢ vanishes on E; for k; + k, <i. Notice that if
W c &2H(X, K,) is any nonzero subspace, then the condition a?b = —c is
nontrivial for some a;, i.e., there is a pair (b, ¢) € W violating the condition.
Hence if k; > dimW, the conditions a?h = —c at k, points implies b = ¢ = 0.
In our case

k k
W=H°D,0 K—2Zl: E||®H° D,0O|K—2 22 E ||,
i=2 isky+1
so if
ky ko
(332) ky=h°\D,0|K-2) E/||+r°|D,0|K-2 } E||
i=2 i=hk +1

then any (b, ¢) satisfying the conditions a?b = —c is zero. On the other hand,
K =3k, >18 fori=1,2

since £° > 1000 and X, < [(5/16)h°] + 1. So (3.3.1) shows that (3.3.2) is valid
using our definition of k;.
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If e = a — d, then e vanishes twice on E, for i > k, + k; and once at the
ki{+ k, = 1curves E, where 1 <i < k{ + k,. Now

By 1
8h<8h.

So h° — 3k, > 18. So (3.3.1) shows that

ky < 2h°

ky+ kot kg
K- Y 2E

ik +ky+1

| D, 0O

and since
k1+k2—1>h°—3k3

by elementary algebra, we see that e = a — d = 0. Hence a = d = 0.

The cases where j > 1 can be treated similarly.

4. In this section we consider a construction of stable bundles which is useful
if there are curves of low genus on X. We begin with a well-known lemma.

Lemma 4.1. Let C be a reduced and irreducible curve of arithmetic genus g in
X. Let M be a line bundle of degrees > 3g. Then M is generated by its global
sections. :

Proof. Let x € C. Let #: C — C be the normalization of C. The image of
7*(m ) in @ is a sheaf of ideals #. We claim deg £ > —(g + 1). Indeed, if &
is a line bundle of very large degree on C and £= 7*(.%)

1+ deg(F® L) > h%(C,F50P8)>h"(C,m,®%)
>h(C,L)-1>deg¥—g.

Since deg(.£ ® .£) = deg.£ + deg ., we have established our claim.

Note that . is generated by global sections if A'(m, ® #) =0 for all
x € C.If # is not generated by global sections, Serre duality shows we have a
nonzero map from m, ® # to w., where w. is the sheaf of dualizing
differentials on C. This in turn gives a nonzero map for £ ® /# to &. Since
deg # > 3g, such a map is necessarily zero.

To construct our bundle, we suppose we are given two distinct algebraically
equivalent curves C and C’ of arithmetic genus g. We suppose C and C’ are
reduced and irreducible and C - X > 0. Select divisors F and F’ on C and C’
respectively so that the points of F and F’ are smooth points of C and C’ and
the support of F and F’ is disjoint from C N C’. We suppose the degrees of F
and F’ are > 3g. We first construct a surjective map

D: 0,(C) @ 04(C’) > O-(C + F).
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Indeed such a map is given by a pair (s, s”), where s is a section of O.(F) and
s’ is a section of O.(F + C — C’). Since both these line bundles are generated
by global sections by Lemma 4.1, taking s, s’ generic produces a surjective
map . We can similarly construct a surjective map -

®': 0,(C) ®0,(C") - O.(C + F’)

given by sections ¢ of O.(C’ — C + F’) and ¢’ of O..(F’). At a given point P
of C N C’, we can choose s(P) = G and ¢'(P) = 0. Thus

V=000 0,(C)®0,(C')—>0(C+F)ad0.(C"+F’)

is onto at P. Since we are free to choose s, ¢’ generically, we can assume that ¥
is surjective. Let & = Ker ¥, We compute ¢,(&).

(4.1.1) x(&) = —,(&) +2x(0y),

(4.1.2) x(0(C)® 0(C’)) =C*- C- K+ 2x(0y),

(4.1.3) x{(0-(C+ F))=degF - 3(C?* - C-K),
- (41.4) x(0-(C" + F')) =deg F’ - }(C?* - C- K),

¢, (&) =degF + deg F’ > 6bg.

Let &(s,s’,1,¢") be the bundle & we have constructed. Let us check the
stability of such &(s,s’,¢,¢") if s,s',1,¢" are chosen generically. First, if
&(s,s’,1,1") is not H-stable for generic s,s’,¢,¢’, there is a line bundle .#
mapping to O(C) ® O(C’) so that &(A)=0, ®'(A)=0 and (¢;(A)- H)
> 0. By a standard semicontinuity argument (see §5) such an .# would have
to exist for all s,s’,¢,¢". In particular, take s” = ¢ = 0. Say the map of # to
0(C) is nontrivial. The map of .# to @(C) would have to vanish on C. Hence
A would map to 0. Since (¢,(A) - H) > 0, this implies that .# = @. By our
semicontinuity argument, we can assume that the generic &(s,s’,t,t’) is
destabilized by a line bundle algebraically equivalent to zero. Since 2g — 2 =
C(C + K) and C - K > 0, we see that deg F > 3g > C* Now the kernel %,
of the map @ ’

D,.:0.(C)®0-(C") - O-(C+ F)

is a line bundle on C of degree C? — deg F < 0. Hence the map of .# - to %,
is zero since .# has degree zero on C. So the map ¥ of A to O(C) ® O(C’)
vanishes on C. Similarly ¥ vanishes on C’. So .# maps to O(-C’) & O(-C),
which contradicts the (¢,(#) - H) > 0. We have established.

Proposition 4.2. If n > 6g, there is a stable bundle & of rank two with
c (&)= 0and c,(&) = n.
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We remark that this Proposition establishes Theorem 1.2 unless X is of
general type. Indeed if 4° > 1000 and X is not of general type, then X must
be elliptic. Thus we can apply the above theory when C and C’ are elliptic.

Suppose that X is a surface of general type which has no exceptional curves
of the first kind and that there are effective divisors £ and E’ so that
20C + E and 20C’ + E’ are canonical divisors.

Proposition 4.3.  Suppose h° > 1000 and n > (3/2)h°. Then there is a stable
bundle & on X with ¢;(&) = 0,¢,(&) = n.

Proof. We have Noether’s formula

1= 1{0) + h*(0) = x(0y) = (K2 + ¢,(T)),
where T is the tangent bundle. We have hz(@) = h%(K), and the Miyoka-Yau
inequality
3¢,(T) > K*?
Combining these, we obtain
h°(K) > $K*—1.

Let us compute an estimate for the genus of C. -

26 -2=C(K+ C).
We have

0<20(C-K)<K?
since K - E > 0. Also
1

K*-C?<(C-K)' < —(K?)
(20)
So
1
2 - 2
C*< 2o5K*
Thus
20— 2< ( L )K2
g 20 400

26 —-2< (515 + m)(%o(K) +1).

Since h°(K) = 1000, then
6g < %hO(K)’

and the Proposition follows by Proposition 4.2.
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Suppose X is a smooth hypersurface of degree d in P? and that H is just a
hyperplane section. Let C and C’ also be hyperplane sections. Then the genus
g of C is $(d — 1)(d — 2), since C is a plane curve of degree d. On the other
hand, we have

WX, 0(K) = (171) = $d=D(@-2)(d-3).
So there are stable bundles on X with ¢;(E) = 0 and c,(E) = n, as long as
n>3(d—1)Yd—-2)and d > 3.

5. We retain the notation of §1. Let & be a bundle on D. We suppose that
&p is a subsheaf of 0, ® 0,, and that H%(D, &) = 0. We further assume that
A& is isomorphic to 0y (+Xn,D,) for some appropriate n; € Z.

Our main object in this section is to establish:

Lemma 5.1.  Suppose that for each n, & can be extended to a bundle on nD.
Then we can find a stable bundle F on X with ¢ |(F) =0, c,(F) = ¢,(&).

Proof. Let £ be a very ample line bundle on Z so that H'(¥® &)= 0
for i > 0 and ¥ ® & is generated by global sections. Let

P(n) = x(&® 2.

Let N = h%(&® #). Let Q - C be Grothendieck’s Quot scheme. Thus there
is a coherent sheaf ¥4 on Q X . Z which is flat over Q and such that the
Euler-Poincaré Polynomial of ¢ over each closed point in Q is P and thereis a
given surjective map «: @ — %. Further 7 and ¥ are universal with respect
to these properties. In particular, choose a basis of H%(&® .#). This choice
determines a surjection 0§ — & ® . Let ¢ be the corresponding closed point
in Q.

Let ¢ be a uniformizing parameter at P € C. By shrinking C, we may
assume that ¢ vanishes only at P. We claim ¢ does not vanish identically on
Q.4 In any neighborhood of g. Suppose not. Then for some n, t” would
vanish identically on Q near ¢ since Q is a finite type over C. This means that
we cannot lift the inclusion of mP into C to a map of mP to Q if m > n. But
& can be extended to a bundle &, on mD and since h'(£® L) =0, the
sections of & ® & extend to &, ® L. But mP X . Z = mD. So the universal
property of the Quot scheme gives a lifting of mP to Q. So our claim is
established.

In particular, we can find a reduced curve C’ in Q passing through ¢ so that
t does not vanish identicallyon C’. Let Z' = Z X . C'. Fors € C’, let Z; be
the fiber of Z’ over s. There is a coherent # on Z’ so that # = #® @, is
our original &. (Note Z, = D.) By shrinking C’, we may assume % is locally
free and that g € C’ is the only point mapping to P. Note det.% is
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algebraically equivalent to zero for r + ¢ since det %, is a sheaf of ideals.
Thus ¢;(.#) = 0. Let H be an ample line bundle on X and suppose that %, is
not H-stable for an infinite number of r € C’. H stability is an open
condition, so %, must be H unstable for an uncountable number of s. Since
there are only a countable number of line bundles mod algebraic equivalence,
we can select a connected component A4 of the Picard group of X so that for
an infinite number of r € C’, there is an L, in 4 with #°(L, ® £) # 0 and
(ci(L,)-H)< 0. Theset T C A X (C’ — g) consisting of points (L, r) so that
h°(L ® %)+ 0 is closed and has infinite image in C’. There is a curve
C” C T which has infinite image in C’. Let C” be the closure of C”. Then C”
maps onto C’. Replacing C’ by C”, we see that we can assume that there is a
line bundle .# on X X C’ so that h%(#, ® %) + 0 for r # ¢q. We can pull
back .# to a line bundle again denoted by .# on Z’. (This Z’ is the fiber
product of the original Z’ by the base extensions we have made.) Thus ./#  is
trivial on the exceptional divisors D; and ¢;(.# ) - H < 0 on D. But semicon-
tinuity, there is a nonzero section s of #, ® &. We claim this is impossible.
First, s must vanish on -D. Since &, C 0@ @, s would give a section of
(A, &M ,)p Since (¢y(A,)-HY<O0, #,|p=0p So &, would have a
section, which contradicts our assumptions. Consider s on each D,. s vanishes
on D N D,, whichis a line in D, = P2 So s is a section of %,(~1). But %, is
stable and ¢,(%;) = 1. So s vanishes on D,, and hence s vanishes.

Our bundle %, r € C’ must be H-stable for all but finitely many r. Since
there are only a countable number of ample divisors mod algebraic equiva-
lence, an infinite number of those # must be H-stable for any H.

6. In this section, we consider vector bundles on P2. Let L be a line in P?
and let &; be a bundle on 3L so that & =&; ® 0,, is isomorphic to
(0@ 0()),, and det&; = (O(1)),,. We suppose that if £ is an invertible
sheaf on 3L of degree -1, then h% &, ® £) =0 (Such an # need not be
0y,(-1))

Proposition 6.1. There is a stable bundle ¥ on P? so that 9,, = &, and
c,(%)=12.

Proof. There is an exact sequence

0-8(-2)->8—-8-0
where &, = (&), Since h(&,(-2)) = 1, and h°(&,) = 4, we see that at least 3
independent sections of &, lift to &;. We claim there are two sections s and ¢
of H°(&,) so that s A { maps to a nonzero element of H%( A 2&)). Let 5, and
s, be two sections of &, which map to independent sections of H%(&)). (s,
and s, exist, since the kernel of the map from H%&,) to H%(&)) has
dimension 1.) If 5, A s, = 0, they both must be sections of the subbundle
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0,(1) C &,. Since s, and s, map to zero in the quotient @; of &), they must
map to zero in the quotient 0,, of &,, since H(0,) = H%(0,,). So 5s; A s,
maps to zero in H%det&,). But H(deg&,) = H%deg&}), so s; and s,
would be dependent in &,. But s, and s, generate @,(1). So if £ is the line
bundle generated by s; and s5,, ¥ would have degree 1. This contradicts our
original assumption. So s, and s, generate &, at a generic point.

We use s; and s, to define a map from 0,; @ 0,; to &,. Dualizing we have
amap ®: & — 0;; ® 0,;. We can choose ® so that the induced map of &,"
to 0,, ® 0,; maps the unique section of &, to (1,0). A *® is a map from
0,,(-1) to 0O,;, and so is represented by a section of H°(0,;;(1) =
H°(P?, 0(1)). Thus there is a line L’ so that A >® vanishes on L’. We can
choose affine coordinates on P? so that L is given by y = 0 and L' by x = 0.
Locally around (0, 0), we can find a section (1, g(x, y)) of 0,; ® @,, which is
in the image of ®. Note that g(0, y) can be represented as a polynomial G(y)
of degree < 2. Define a map

(03 01;2 (5] (91;2 — (OL,(2)

by ®'(h,1) = —G(y)h + [, where we regard H%(0,,(2)) as the polynomials in
y of degree < 2./ is then a polynomial of degree zero. We claim @’ is onto.
Indeed ®(1,0) = -G(y). But g maps to zero in 0,;, so G(y) = 0 mod(y?).
Hence G has degree 2 and @’ is onto.

Thus Ker @ = & is locally free. Note that %;, 2 &,] since on L' N 3L,
the image of any other section of &5y is dependent on (1, g). Both &%, and
&,y have determinant (1), so they must be isomorphic, since there is a map
between them which is an isomorphism at a generic point.

We claim % is stable. If &% were not stable, % (k) would have a section
which vanished only at a finite number of points for some k < 0. In particular,
we would have a section s of &,7 (k). Such an s would give a nonzero solution
of (0, @ 0,(-1)(k). Thus k = 0. Further s is nowhere vanishing and so
defines a subbundle of degree 0 of &7, which contradicts our original
assumption. We let ¢ = %. One checks ¢,(¥) = 2.

7. We continue with the notation of §1. We will now establish Theorem 1.1
and Theorem 1.2. Let us first turn to Theorem 1.1. Suppose k& > 2({#%/2] + 1).
Proposition 3.2 shows that with appropriate choice of x; and v,, we have

(7.1.1) h*(D,End’(&, ® 0p)(-2D)) = 0,
(7.1.2) h*(D,End’(&, ® 0,)(-2D — E))) < 1.

The remark at the end of §2 shows that we can find an extension of &; of &,
to 3D which is nondegenerate over each E.
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Using §6 we can then construct & on D, so that (%));p D, is isomorphic
to (‘9@3)3DQD, and ¢,(#)) = 1, ¢,(%;) = 2. Consequently, we can construct &,
on 2D + D which restricts to #; on D; and restricts to &; and 3D. We now
show that

(7.1.3) h*(D,End®(%,)(-2D)) = 0.

Let w be the dualizing sheaf of D. Then wp, = 0Dj(—2) and w, = O(Ky + 2E).
Suppose

s € H°(D,End%(%,)(+2D) ® w).
If we show s = 0, (7.1.3) follows by Serre duality. First s Testricts to section s;
of End%(%,) ® v ® 0,, ,(2D). But © ® 0, (2D) = 0p,. Since &, are stable

H(D;,End’(#)) = 0. "Thus each 5; is zero, and s is actually a section of
HO(D End%(¥, )@ w(@2D - LE)) which is

(7.1.4) H°(D,End(%,) ® K,(2D)).

By (7.1.1) and Serre duality on D, (7.1.4) is zero, so s = 0. By the results of §2
¥, can be lifted to arbitrary large infinitesimal neighborhoods of D,. After a
suitable base extension, §5 shows that % can be lifted to Z. Thus Theorem 1.1
1s established as » is even. We even see that the bundle & constructed satisfies
h*(X,End®(&)) = 0. The theorem follows for odd n by the following:

Lemma 7.2. Let & be an H-stable bundle on X with ¢, (&)= 0 and

h%(X,End®(&)) = 0. Then for any n > c,(&), there is an H-stable bundle &'
with ¢,(€") = n, ¢1(&’) = 0 and h*( X, End’(&")) =

Proof. We construct the variety Z of §1 with k =1. Let &=¢&5. & is
0 ® O(1). There is a stable bundle #; on D, = P? which is isomorphic to
Og, ® Op (1) when restricted to the line E; and with ¢,(#;) = 1. We can then
produce a bundle ¢ on D by gluing &%, to &. Suppose s € H°( X, End’(%)
® w). We claim s = 0. wp is O(-2), so s must vanish on D,. Thus s is a
section of HO(D,End%(¥¢)® O(Kp)). If s # 0, we would get a nonzero
section of H°(X,End%(&) ® O(Ky)). Arguing as before, we can produce an
H-stable % on X with ¢,(F) = ¢,(&) + 1 and A%(X,End°(F)) =0

Next we establish Theorem 1.2. If k — 1 = k; + k, + k, in the notation of
§3, then 4#°(D,End%(&) K — E + E;)) = 0. Arguing as before, we can con-
struct an H-stable & with

() =2(ky + ky + ky+ 1),

ie.,

ey =o{se [ 2]) 2
with the property that 2%(X, End%(#)) = 0. Theorem 1.2 follows as before.
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